Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 47(3): 591-599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38447991

RESUMO

The pain matrix, which includes several brain regions that respond to pain sensation, contribute to the development of chronic pain. Thus, it is essential to understand the mechanism of causing chronic pain in the pain matrix such as anterior cingulate (ACC), or primary somatosensory (S1) cortex. Recently, combined experiment with the behavior tests and in vivo calcium imaging using fiber photometry revealed the interaction between the neuronal function in deep brain regions of the pain matrix including ACC and the phenotype of chronic pain. However, it remains unclear whether this combined experiment can identify the interaction between neuronal activity in S1, which receive pain sensation, and pain behaviors such as hyperalgesia or allodynia. In this study, to examine whether the interaction between change of neuronal activity in S1 and hyperalgesia in hind paw before and after causing inflammatory pain was detected from same animal, the combined experiment of in vivo fiber photometry system and von Frey hairs test was applied. This combined experiment detected that amplitude of calcium responses in S1 neurons increased and the mechanical threshold of hind paw decreased from same animals which have an inflammatory pain. Moreover, we found that the values between amplitude of calcium responses and mechanical thresholds were shifted to negative correlation after causing inflammatory pain. Thus, the combined experiment with fiber photometry and the behavior tests has a possibility that can simultaneously consider the interaction between neuronal activity in pain matrix and pain induced behaviors and the effects of analgesics or pain treatments.


Assuntos
Dor Crônica , Hiperalgesia , Animais , Camundongos , Escala de Avaliação Comportamental , Cálcio , Córtex Somatossensorial , Cálcio da Dieta , Modelos Animais de Doenças , Neurônios , Fotometria
2.
iScience ; 26(4): 106332, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36968067

RESUMO

The mechanism by which acute pain or itch information at the periphery is processed in the primary somatosensory cortex (S1) remains unclear. To elucidate this, we used a viral-mediated targeted-recombination-in-active population system to target S1 neuronal ensembles that are active during pain or itch sensations. We induced the expression of excitatory or inhibitory designer receptors exclusively activated by designer drugs in pain- or itch-related S1 neurons. We identified neuronal populations in mice that regulate the sensory components of pain and itch in the S1 hind paw region. Notably, the neuronal circuit between pain-related S1 neurons and the parafascicular nucleus contributed to hyperalgesia and anxiety-like behavior. We propose that S1 plays an essential role in sensory and affective responses to noxious stimuli, such as pain.

3.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769018

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a devastating neurodegenerative disorder. In recent years, attention of researchers has increasingly been focused on studying the role of brain insulin resistance (BIR) in the AD pathogenesis. Neuroinflammation makes a significant contribution to the BIR due to the activation of NLRP3 inflammasome. This study was devoted to the understanding of the potential therapeutic roles of the NLRP3 inflammasome in neurodegeneration occurring concomitant with BIR and its contribution to the progression of emotional disorders. METHODS: To test the impact of innate immune signaling on the changes induced by Aß1-42 injection, we analyzed animals carrying a genetic deletion of the Nlrp3 gene. Thus, we studied the role of NLRP3 inflammasomes in health and neurodegeneration in maintaining brain insulin signaling using behavioral, electrophysiological approaches, immunohistochemistry, ELISA and real-time PCR. RESULTS: We revealed that NLRP3 inflammasomes are required for insulin-dependent glucose transport in the brain and memory consolidation. Conclusions NLRP3 knockout protects mice against the development of BIR: Taken together, our data reveal the protective role of Nlrp3 deletion in the regulation of fear memory and the development of Aß-induced insulin resistance, providing a novel target for the clinical treatment of this disorder.


Assuntos
Doença de Alzheimer/metabolismo , Inflamassomos/metabolismo , Resistência à Insulina/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neuroinflamatórias/metabolismo
4.
Brain Res ; 1752: 147220, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33358726

RESUMO

Neuroinflammation has been classified as a trigger of behavioral alterations and cognitive impairments in many neurological conditions, including Alzheimer's disease, major depression, anxiety and others. Regardless of the cause of neuroinflammation, key molecules, which sense neuropathological conditions, are intracellular multiprotein signaling inflammasomes. Increasing evidence shows that the inflammatory response, mediated by activated nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasomes, is associated with the onset and progression of a wide range of diseases of the CNS. However, whether the NLRP3 inflammasome in the CNS is involved in the learning, development of anxiety and adult neurogenesis remains elusive. Therefore, the present study was designed to assess NLRP3 inflammasome contribution in anxiety and reveal its potential involvement in the experimental acquisition of fear responses and hippocampal neurogenesis. Behavioral, immunohistochemical and electrophysiological alterations were measured to evaluate role of neuroinflammation in the limbic system of mice. In this study, we describe interrelated neurophysiological mechanisms, which culminate in absence of NLRP3 inflammasome in young 4 months mice. These include the following: anxious behavior and deterioration in learning and memory of fear conditioning; impairment of adult neurogenesis; reduction and altered morphology of astrocytes in the brain; hyperexcitability in basolateral amygdala (BLA); impaired activation in axons of pyramidal cells of CA1 hippocampal zone in NLRP3 KO mice particularly via the Schaffer collateral pathway; and impaired synaptic transduction in pyramidal cells mediated by an embarrassment of neurotransmitter release from presynaptic site in CA3 hippocampal zone. The present study has demonstrated the novel findings that basal level of NLRP3 inflammasome in the brain of young mice is required for conditioning-induced plasticity in the ventral hippocampus and the basolateral amygdala. The deletion of NLRP3 impair synaptic transduction and caused anxiety-like behavior and labored fear learning, suggesting that low grade inflammation, mediated by NLRP3 expression, play a key role in memory consolidation.


Assuntos
Ansiedade/fisiopatologia , Encefalite/fisiopatologia , Hipocampo/fisiopatologia , Inflamassomos/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Animais , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...